Качество работы и отношение к клиенту на первом месте !

Новости

Электроника в автомобиле

Сегодня никого уже не удивишь обилием электроники в автомобиле, особенно высокого класса - в "Линкольне" модели Mark VIII только микропроцессоров больше, чем на ином современном истребителе. Рынок автомобильной электроники является одним из четырех наиболее быстрорастущих секторов электронной промышленности (после телекоммуникационного, компьютерного и промышленного оборудования), которая, в свою очередь, является наиболее быстрорастущей - в среднем 8...10% в год - крупнейшей отраслью мировой промышленности. Причем основная доля стоимости электронных устройств за рубежом приходится не на сервисные устройства (магнитолы, охранная сигнализация и т. п.), а на средства управления собственно системами автомобиля и обеспечения безопасности.

Их доля в стоимости современного автомобиля пока также возрастает, достигая сейчас в среднем 10...15%, хотя аналитики и предсказывают ее стабилизацию в ближайшем будущем на уровне примерно 20...25%. Учитывая, однако, непрерывное снижение удельной стоимости электронных устройств (в пересчете на одну функцию), нельзя сомневаться в том, что число функций, выполняемых электронными устройствами в автомобиле, и их разнообразие будут неуклонно расширяться и далее, по крайней мере, до тех пор, пока потребитель будет в состоянии ими воспользоваться.

Благодаря постепенному восстановлению связей между российской и мировой экономикой дисбаланс цен между электроникой и прочей машиностроительной продукцией, существовавший в советские времена, уходит в прошлое. Вместе с этим необходимость одновременного повышения экономичности, экологичности и улучшения ходовых качеств автомобилей становится актуальной и для отечественных автозаводов.

Во-первых, это связано с тем, что экспорт морально устаревшей продукции в развитые страны становится практически невозможен, даже по заниженным ценам, а предприятия нуждаются в твердой валюте для оплаты импортируемых комплектующих. Во вторых, в последнее время в нашей стране были приняты и вскоре должны быть введены в действие соответствующие мировой практике более жесткие нормативы на допустимые уровни загрязнения воздуха и безопасность автомобилей, что приблизит нас к условиям, сложившимся на мировом автомобильном рынке.

В этой связи обращение к опыту мировой автопромышленности выглядит совершенно естественным и оправданным. У нас сейчас ВАЗ комплектует системами электронного управления впрыском и зажиганием более 40% выпускаемых автомобилей.

В настоящее время наиболее важным и экономически оправданным является широкое внедрение электронных систем, позволяющих улучшить характеристики и снизить стоимость эксплуатации двигателя и трансмиссии, а также систем для повышения безопасности - как активной (АБС - антиблокировочная система (AntiBlocking System), АПС - антипробуксовочная система )так и пассивной (подушки безопасности). Кроме этого, разработаны и уже находят применение другие электронные системы - управления подвеской, навигационные, парковочные и т. д., но они пока скорее роскошь, чем необходимость.

Долгое время единственным электронным узлом в автомобиле, кроме радиоприемника, была система зажигания. Классическая искровая система зажигания была впервые предложена Филиппом Лебоном в 1801 г., а первое промышленное применение она нашла на газовом двигателе Ленуара в 1860-1864 гг. Однако из-за низкого уровня электротехники того времени искровое зажигание работало ненадежно. Поэтому до 90-х годов прошлого века большинство двигателей внутреннего сгорания строили с использованием калильного зажигания (сильно нагретого тела в камере сгорания).

Ситуация изменилась с созданием Робертом Бошем вполне надежного и компактного магнето. Далее, в 10-х годах нашего века благодаря совершенствованию конструкции запальной свечи, катушки зажигания и подбору материалов контактов удалось добиться удовлетворительной работы и от батарейной системы зажигания. Тем не менее, она, особенно контакты, все равно оставалась одной из наиболее ненадежных и требующих ухода частей автомобиля. Нужны были принципиально иные решения.

Первые электронные системы зажигания были созданы в 1940-х годах на основе газонаполненных тиратронов, однако широкого применения не нашли из-за громоздкости и хрупкости конструкции. Массовое применение транзисторные системы зажигания - сначала контактные, затем бесконтактные - нашли в начале 1960-х годов, когда General Motors Corp. (GMC) стала оснащать ими свои серийные автомобили.

Дальнейшее распространение электронных систем зажигания общеизвестно. Отдельный интерес представляет система с высокочастотным разрядом Direct Ignition (SAAB), заимствованная у реактивных двигателей. При ее создании использованы те обстоятельства, что напряжение пробоя для высокочастотного (80...200 кГц) напряжения оказывается раза в два-три меньше, чем для низкочастотного, и вместо тонкой нитевидной искры получается шарообразный разряд с существенно большей поверхностью.

Понижение напряжения делает систему менее чувствительной к замасливанию и нагару на свечах, а шарообразная форма искрового разряда ускоряет воспламенение и повышает надежность поджигания бедных смесей. Однако конструктивная сложность и более высокая стоимость этой системы, а также то, что она генерирует обильные радиопомехи, привели к снятию ее с производства после внедрения систем распределенного впрыска с электронным управлением (Условия работы свечей и системы зажигания в целом на таких двигателях много легче, чем на карбюраторных) .

Вопреки распространенному мнению, впрыск топлива также не является новым изобретением. Более того, первоначально почти во всех двигателях внутреннего сгорания, работавших на жидком топливе, была использована именно система впрыска. Однако вскоре стало ясно, что она требует довольно сложного механизма регулирования количества впрыскиваемого топлива и топливных насосов-дозаторов, изготовленных с высокой точностью. В начале века это обходилось очень дорого, при разумной же цене не обеспечивало необходимой надежности и стабильности характеристик.

Поэтому после изобретения Донатом Банки простого и дешевого распылительного карбюратора о системах впрыска в автомобилестроении почти забыли. Они остались только в дизельных двигателях, повышенная себестоимость которых, кстати, во многом обязана дороговизне аппаратуры непосредственного впрыска высокого давления. Механические устройства управления впрыском из-за их высокой цены на массовых автомобилях почти не применяли. Первые системы с электрическим управлением были созданы еще в 1939 г. (Moto Guzzi, Италия), но так и остались технической экзотикой.

В 1957 г. фирма Chrysler представила автомобильную электронную систему управления впрыском топлива, выполненную на вакуумных лампах, также не нашедшую широкого применения из-за дороговизны. Большее распространение в начале 1970-х годов получили транзисторные системы, примененные на немецких (Volkswagen, 1967) и японских (Nissan, 1971) автомобилях, экспортируемых в США. На рубеже 70-х и 80-х годов в Японии, США и несколько позже в Германии начали внедрять комплексные микропроцессорные системы управления как двигател

Карбюратору присущи многие недостатки: нестабильность регулировок, особенно при смене температуры и сорта топлива; неравномерное распределение топлива по цилиндрам; низкая точность работы при малых нагрузках, вынуждающая настраивать карбюраторы таким образом, что на холостом ходу и малой нагрузке горючая смесь оказывается излишне обогащенной. Кроме того, карбюратор увеличивает сопротивление всасыванию воздуха. Из-за наличия поплавковой камеры работа карбюратора ухудшается в условиях сильной тряски, ускорений на поворотах и при наклонах автомобиля.

До поры до времени эти недостатки применительно к массовым автомобилям были вполне скомпенсированы простотой и дешевизной карбюраторов. Тем не менее в дорогих автомобилях, а также в поршневой авиации уже с конца 30-х годов наметился возврат к использованию систем впрыска топлива с механическим управлением. Они были весьма сложны и дороги, но позволяли повысить экономичность и стабильность работы двигателей.

Однако по мере ужесточения требований к экологической чистоте выхлопа и упрощению обслуживания массового автомобиля, обеспечить их выполнение совершенствованием карбюраторов оказалось уже практически невозможным (Типовым требованием на рынке США является необходимость в первом ТО двигателя и трансмиссии не ранее, чем через 80...100 тыс. миль пробега). Сущность проблемы состоит в том, что, если горючая смесь бедна, она плохо поджигается, неустойчиво горит, склонна к детонации и при сгорании дает много окислов азота NOx. Попав в атмосферу и соединясь с водой, эти окислы образуют азотную и азотистую кислоты.

Если же топлива в смеси оказывается больше, чем может быть сожжено в имеющемся количестве кислорода, то неполное сгорание топлива приводит к выбросам углеводородов CmHn, угарного газа CO, бензапиренов, альдегидов, а при еще большем избытке топлива - и весьма канцерогенной копоти (дыма). При сильном нарушении соотношения между количествами воздуха и топлива топливовоздушная смесь вообще перестает воспламеняться, что, без сомнения, знакомо многим автомобилистам.

Резко - более чем в десять раз - уменьшить количество вредных выбросов можно, используя каталитический нейтрализатор (дожигатель) выхлопных газов, однако для его работы необходим вполне определенный состав выхлопных газов. В частности, нейтрализатор не терпит работы на этилированном бензине. Нарушение этих условий приводит к необратимому выходу нейтрализатора из строя.

Тем не менее, появление и быстрое удешевление микропроцессорной техники позволило создать системы впрыска топлива для бензиновых двигателей, во-первых, не требующие дорогих прецизионных механических устройств, а, во-вторых, обладающие существенно большими возможностями, нежели механические. В результате применение электронных систем управления впрыском и зажиганием топлива с конца 1980-х годов в развитых странах стало экономически оправданным на автомобилях практически всех классов.

Система впрыска с электронным управлением (EFI - Electronic Fuel Injection) при использовании датчика содержания кислорода в выхлопных газах (л-зонда) позволяет обеспечить для каждого цилиндра очень стабильное (+0,5%) соблюдение оптимального соотношения по массе подаваемого топлива и засасываемого воздуха (1:14,65 для бензина). Это необходимо как для обеспечения работоспособности каталитического нейтрализатора, так и для достижения наилучшего компромисса между мощностью и экономичностью работы двигателя. Именно поэтому обеспечить на практике длительный срок службы и работоспособность каталитических нейтрализаторов удается только при использо

Системы впрыска топлива условно подразделяют на три группы - с центральным впрыском, когда распылительная форсунка одна на весь впускной коллектор( Иногда ее приходится дополнять второй - пусковой форсункой, работающей при холодном двигателе и отключающейся по мере прогрева) , с распределенным (многоточечным) впрыском, если форсунки установлены во всасывающих патрубках каждого цилиндра вблизи от впускных клапанов, и с прямым (непосредственным) впрыском, когда форсунка смонтирована непосредственно в стенке или головке цилиндра и подает топливо непосредственно в цилиндр в такте сжатия, когда клапаны уже закрыты.

В первых двух случаях давление топлива при его подаче не превышает 4...10 кГ/см2 , тогда как при непосредственном впрыске в дизеле оно может достигать 600, а в бензиновом двигателе - 50 кГ/см2.

Самая дешевая система - с центральным впрыском - фактически дает только два существенных преимущества - вибростойкость и отсутствие необходимости в частой регулировке. Наилучшее отношение цена/качество в настоящее время обеспечивают системы распределенного впрыска во впускные патрубки (рис. 1). Системы непосредственного впрыска в бензиновых двигателях пока оправданы только в двигателях с наддувом, так как они позволяют исключить вынос топливовоздушной смеси в выхлопной коллектор при широких фазах газораспределения и абсолютном давлении наддува более 1,5 кГ/см2.

СЂРёСЃ.1

 

Различают также системы непрерывного и импульсного (периодического) впрыска. В системах непрерывного впрыска форсунка работает постоянно, меняется лишь ее производительность, в импульсных - впрыск топлива производится порциями в определенные моменты. Непрерывный впрыск имеет много недостатков и в настоящее время применительно к автомобильным двигателям его считают устаревшим.

Применение распределенного впрыска дает и другие преимущества перед использованием карбюраторов. Вопервых, это возможность обеспечения высокой стабильности состава горючей смеси в широких пределах температуры и нагрузок двигателя, причем практически независимо от вязкости топлива (пропускная способность жиклеров карбюратора сильно зависит от вязкости топлива). Во-вторых, использование многоточечного впрыска (особенно непосредственного) позволяет не только обеспечить равномерное распределение топлива по цилиндрам, но и исключить необходимость подогревания всасываемого воздуха и впускного коллектора. Более того, испаряющееся топливо, наоборот, охлаждает всасываемый воздух и цилиндры двигателя. В результате плотность всасываемого воздуха оказывается на 7...10% больше (С той же целью - снижения температуры воздуха - даже на дешевых автомобилях со впрыском стараются засасывать воздух не из моторного отсека, где он горячий, а непосредственно "с улицы", предусматривая для этого в случае необходимости дополнительные воздухозаборники (Opel "Cadett") .

Увеличение плотности воздуха, а значит, количества кислорода, поступающего в цилиндры, позволяет сжигать больше топлива и получить большую мощность. Понижение температуры всасываемого воздуха позволяет повысить степень сжатия, что улучшает экономичность двигателя.

Исключение карбюратора уменьшает сопротивление всасываемому воздуху, давая возможность использования резонансного впуска, что также способствует повышению мощности. Приближение форсунки к цилиндру в системах распределенного впрыска предотвращает выпадение конденсата топлива. Это облегчает запуск двигателя, уменьшает образование нагара на свечах зажигания и смывание масла со стенок цилиндров.

Отсутствие конденсации топлива увеличивает устойчивость работы и крутящий момент двигателя, особенно на малых и средних оборотах, где он наиболее нужен. Если прибавка максимальной мощности при переводе двигателя на впрыск топлива обычно равна примерно 10%, то повышение крутящего момента на малых и средних оборотах может достигать 15...20%.

Конечно, подобного повышения ходовых качеств автомобиля можно достичь и "в лоб", увеличив рабочий объем двигателя примерно на 20...30%, однако при этом ухудшится экономичность, увеличатся масса и габариты двигателя, а значит, и автомобиля в целом, возрастут эксплуатационные расходы.

Использование систем распределенного впрыска предоставляет еще одну возможность снижения расхода топлива - отключение подачи топлива в часть цилиндров с тем, чтобы в большей степени загрузить остальные. Целесообразность такого решения обусловлена тем, что при малой нагрузке КПД двигателя внутреннего сгорания резко снижается не только за счет механических потерь, но и за счет неоптимальности рабочего цикла. Возрастание КПД нагруженных цилиндров с лихвой компенсирует механические потери в выключенных цилиндрах, поэтому экономичность на малых нагрузках удается повысить на 25...30%, особенно на многоцилиндровых двигателях.

Подобный прием - поочередный пропуск циклов впрыска - также широко используют на многоцилиндровых японских и американских автомобилях. Существует и еще одно применение способа пропуска циклов - охлаждение "отключенных" цилиндров засасываемым воздухом, позволяющее сохранить работоспособность двигателя и доехать до места назначения даже после полной потери охлаждающей жидкости (двигатель GMC North Star и др.).

Сегодня никого уже не удивишь обилием электроники в автомобиле, особенно высокого класса - в "Линкольне" модели Mark VIII только микропроцессоров больше, чем на ином современном истребителе. Рынок автомобильной электроники является одним из четырех наиболее быстрорастущих секторов электронной промышленности (после телекоммуникационного, компьютерного и промышленного оборудования), которая, в свою очередь, является наиболее быстрорастущей - в среднем 8...10% в год - крупнейшей отраслью мировой промышленности. Причем основная доля стоимости электронных устройств за рубежом приходится не на сервисные устройства (магнитолы, охранная сигнализация и т. п.), а на средства управления собственно системами автомобиля и обеспечения безопасности.

Их доля в стоимости современного автомобиля пока также возрастает, достигая сейчас в среднем 10...15%, хотя аналитики и предсказывают ее стабилизацию в ближайшем будущем на уровне примерно 20...25%. Учитывая, однако, непрерывное снижение удельной стоимости электронных устройств (в пересчете на одну функцию), нельзя сомневаться в том, что число функций, выполняемых электронными устройствами в автомобиле, и их разнообразие будут неуклонно расширяться и далее, по крайней мере, до тех пор, пока потребитель будет в состоянии ими воспользоваться.

Благодаря постепенному восстановлению связей между российской и мировой экономикой дисбаланс цен между электроникой и прочей машиностроительной продукцией, существовавший в советские времена, уходит в прошлое. Вместе с этим необходимость одновременного повышения экономичности, экологичности и улучшения ходовых качеств автомобилей становится актуальной и для отечественных автозаводов.

Во-первых, это связано с тем, что экспорт морально устаревшей продукции в развитые страны становится практически невозможен, даже по заниженным ценам, а предприятия нуждаются в твердой валюте для оплаты импортируемых комплектующих. Во вторых, в последнее время в нашей стране были приняты и вскоре должны быть введены в действие соответствующие мировой практике более жесткие нормативы на допустимые уровни загрязнения воздуха и безопасность автомобилей, что приблизит нас к условиям, сложившимся на мировом автомобильном рынке.

В этой связи обращение к опыту мировой автопромышленности выглядит совершенно естественным и оправданным. У нас сейчас ВАЗ комплектует системами электронного управления впрыском и зажиганием более 40% выпускаемых автомобилей.

В настоящее время наиболее важным и экономически оправданным является широкое внедрение электронных систем, позволяющих улучшить характеристики и снизить стоимость эксплуатации двигателя и трансмиссии, а также систем для повышения безопасности - как активной (АБС - антиблокировочная система (AntiBlocking System), АПС - антипробуксовочная система )так и пассивной (подушки безопасности). Кроме этого, разработаны и уже находят применение другие электронные системы - управления подвеской, навигационные, парковочные и т. д., но они пока скорее роскошь, чем необходимость.

Долгое время единственным электронным узлом в автомобиле, кроме радиоприемника, была система зажигания. Классическая искровая система зажигания была впервые предложена Филиппом Лебоном в 1801 г., а первое промышленное применение она нашла на газовом двигателе Ленуара в 1860-1864 гг. Однако из-за низкого уровня электротехники того времени искровое зажигание работало ненадежно. Поэтому до 90-х годов прошлого века большинство двигателей внутреннего сгорания строили с использованием калильного зажигания (сильно нагретого тела в камере сгорания).

Ситуация изменилась с созданием Робертом Бошем вполне надежного и компактного магнето. Далее, в 10-х годах нашего века благодаря совершенствованию конструкции запальной свечи, катушки зажигания и подбору материалов контактов удалось добиться удовлетворительной работы и от батарейной системы зажигания. Тем не менее, она, особенно контакты, все равно оставалась одной из наиболее ненадежных и требующих ухода частей автомобиля. Нужны были принципиально иные решения.

Первые электронные системы зажигания были созданы в 1940-х годах на основе газонаполненных тиратронов, однако широкого применения не нашли из-за громоздкости и хрупкости конструкции. Массовое применение транзисторные системы зажигания - сначала контактные, затем бесконтактные - нашли в начале 1960-х годов, когда General Motors Corp. (GMC) стала оснащать ими свои серийные автомобили.

Дальнейшее распространение электронных систем зажигания общеизвестно. Отдельный интерес представляет система с высокочастотным разрядом Direct Ignition (SAAB), заимствованная у реактивных двигателей. При ее создании использованы те обстоятельства, что напряжение пробоя для высокочастотного (80...200 кГц) напряжения оказывается раза в два-три меньше, чем для низкочастотного, и вместо тонкой нитевидной искры получается шарообразный разряд с существенно большей поверхностью.

Понижение напряжения делает систему менее чувствительной к замасливанию и нагару на свечах, а шарообразная форма искрового разряда ускоряет воспламенение и повышает надежность поджигания бедных смесей. Однако конструктивная сложность и более высокая стоимость этой системы, а также то, что она генерирует обильные радиопомехи, привели к снятию ее с производства после внедрения систем распределенного впрыска с электронным управлением (Условия работы свечей и системы зажигания в целом на таких двигателях много легче, чем на карбюраторных) .

Вопреки распространенному мнению, впрыск топлива также не является новым изобретением. Более того, первоначально почти во всех двигателях внутреннего сгорания, работавших на жидком топливе, была использована именно система впрыска. Однако вскоре стало ясно, что она требует довольно сложного механизма регулирования количества впрыскиваемого топлива и топливных насосов-дозаторов, изготовленных с высокой точностью. В начале века это обходилось очень дорого, при разумной же цене не обеспечивало необходимой надежности и стабильности характеристик.

Поэтому после изобретения Донатом Банки простого и дешевого распылительного карбюратора о системах впрыска в автомобилестроении почти забыли. Они остались только в дизельных двигателях, повышенная себестоимость которых, кстати, во многом обязана дороговизне аппаратуры непосредственного впрыска высокого давления. Механические устройства управления впрыском из-за их высокой цены на массовых автомобилях почти не применяли. Первые системы с электрическим управлением были созданы еще в 1939 г. (Moto Guzzi, Италия), но так и остались технической экзотикой.

В 1957 г. фирма Chrysler представила автомобильную электронную систему управления впрыском топлива, выполненную на вакуумных лампах, также не нашедшую широкого применения из-за дороговизны. Большее распространение в начале 1970-х годов получили транзисторные системы, примененные на немецких (Volkswagen, 1967) и японских (Nissan, 1971) автомобилях, экспортируемых в США. На рубеже 70-х и 80-х годов в Японии, США и несколько позже в Германии начали внедрять комплексные микропроцессорные системы управления как двигател

Карбюратору присущи многие недостатки: нестабильность регулировок, особенно при смене температуры и сорта топлива; неравномерное распределение топлива по цилиндрам; низкая точность работы при малых нагрузках, вынуждающая настраивать карбюраторы таким образом, что на холостом ходу и малой нагрузке горючая смесь оказывается излишне обогащенной. Кроме того, карбюратор увеличивает сопротивление всасыванию воздуха. Из-за наличия поплавковой камеры работа карбюратора ухудшается в условиях сильной тряски, ускорений на поворотах и при наклонах автомобиля.

До поры до времени эти недостатки применительно к массовым автомобилям были вполне скомпенсированы простотой и дешевизной карбюраторов. Тем не менее в дорогих автомобилях, а также в поршневой авиации уже с конца 30-х годов наметился возврат к использованию систем впрыска топлива с механическим управлением. Они были весьма сложны и дороги, но позволяли повысить экономичность и стабильность работы двигателей.

Однако по мере ужесточения требований к экологической чистоте выхлопа и упрощению обслуживания массового автомобиля, обеспечить их выполнение совершенствованием карбюраторов оказалось уже практически невозможным (Типовым требованием на рынке США является необходимость в первом ТО двигателя и трансмиссии не ранее, чем через 80...100 тыс. миль пробега). Сущность проблемы состоит в том, что, если горючая смесь бедна, она плохо поджигается, неустойчиво горит, склонна к детонации и при сгорании дает много окислов азота NOx. Попав в атмосферу и соединясь с водой, эти окислы образуют азотную и азотистую кислоты.

Если же топлива в смеси оказывается больше, чем может быть сожжено в имеющемся количестве кислорода, то неполное сгорание топлива приводит к выбросам углеводородов CmHn, угарного газа CO, бензапиренов, альдегидов, а при еще большем избытке топлива - и весьма канцерогенной копоти (дыма). При сильном нарушении соотношения между количествами воздуха и топлива топливовоздушная смесь вообще перестает воспламеняться, что, без сомнения, знакомо многим автомобилистам.

Резко - более чем в десять раз - уменьшить количество вредных выбросов можно, используя каталитический нейтрализатор (дожигатель) выхлопных газов, однако для его работы необходим вполне определенный состав выхлопных газов. В частности, нейтрализатор не терпит работы на этилированном бензине. Нарушение этих условий приводит к необратимому выходу нейтрализатора из строя.

Тем не менее, появление и быстрое удешевление микропроцессорной техники позволило создать системы впрыска топлива для бензиновых двигателей, во-первых, не требующие дорогих прецизионных механических устройств, а, во-вторых, обладающие существенно большими возможностями, нежели механические. В результате применение электронных систем управления впрыском и зажиганием топлива с конца 1980-х годов в развитых странах стало экономически оправданным на автомобилях практически всех классов.

Система впрыска с электронным управлением (EFI - Electronic Fuel Injection) при использовании датчика содержания кислорода в выхлопных газах (л-зонда) позволяет обеспечить для каждого цилиндра очень стабильное (+0,5%) соблюдение оптимального соотношения по массе подаваемого топлива и засасываемого воздуха (1:14,65 для бензина). Это необходимо как для обеспечения работоспособности каталитического нейтрализатора, так и для достижения наилучшего компромисса между мощностью и экономичностью работы двигателя. Именно поэтому обеспечить на практике длительный срок службы и работоспособность каталитических нейтрализаторов удается только при использо

Системы впрыска топлива условно подразделяют на три группы - с центральным впрыском, когда распылительная форсунка одна на весь впускной коллектор( Иногда ее приходится дополнять второй - пусковой форсункой, работающей при холодном двигателе и отключающейся по мере прогрева) , с распределенным (многоточечным) впрыском, если форсунки установлены во всасывающих патрубках каждого цилиндра вблизи от впускных клапанов, и с прямым (непосредственным) впрыском, когда форсунка смонтирована непосредственно в стенке или головке цилиндра и подает топливо непосредственно в цилиндр в такте сжатия, когда клапаны уже закрыты.

В первых двух случаях давление топлива при его подаче не превышает 4...10 кГ/см2 , тогда как при непосредственном впрыске в дизеле оно может достигать 600, а в бензиновом двигателе - 50 кГ/см2.

Самая дешевая система - с центральным впрыском - фактически дает только два существенных преимущества - вибростойкость и отсутствие необходимости в частой регулировке. Наилучшее отношение цена/качество в настоящее время обеспечивают системы распределенного впрыска во впускные патрубки (рис. 1). Системы непосредственного впрыска в бензиновых двигателях пока оправданы только в двигателях с наддувом, так как они позволяют исключить вынос топливовоздушной смеси в выхлопной коллектор при широких фазах газораспределения и абсолютном давлении наддува более 1,5 кГ/см2.

СЂРёСЃ.1

 

Различают также системы непрерывного и импульсного (периодического) впрыска. В системах непрерывного впрыска форсунка работает постоянно, меняется лишь ее производительность, в импульсных - впрыск топлива производится порциями в определенные моменты. Непрерывный впрыск имеет много недостатков и в настоящее время применительно к автомобильным двигателям его считают устаревшим.

Применение распределенного впрыска дает и другие преимущества перед использованием карбюраторов. Вопервых, это возможность обеспечения высокой стабильности состава горючей смеси в широких пределах температуры и нагрузок двигателя, причем практически независимо от вязкости топлива (пропускная способность жиклеров карбюратора сильно зависит от вязкости топлива). Во-вторых, использование многоточечного впрыска (особенно непосредственного) позволяет не только обеспечить равномерное распределение топлива по цилиндрам, но и исключить необходимость подогревания всасываемого воздуха и впускного коллектора. Более того, испаряющееся топливо, наоборот, охлаждает всасываемый воздух и цилиндры двигателя. В результате плотность всасываемого воздуха оказывается на 7...10% больше (С той же целью - снижения температуры воздуха - даже на дешевых автомобилях со впрыском стараются засасывать воздух не из моторного отсека, где он горячий, а непосредственно "с улицы", предусматривая для этого в случае необходимости дополнительные воздухозаборники (Opel "Cadett") .

Увеличение плотности воздуха, а значит, количества кислорода, поступающего в цилиндры, позволяет сжигать больше топлива и получить большую мощность. Понижение температуры всасываемого воздуха позволяет повысить степень сжатия, что улучшает экономичность двигателя.

Исключение карбюратора уменьшает сопротивление всасываемому воздуху, давая возможность использования резонансного впуска, что также способствует повышению мощности. Приближение форсунки к цилиндру в системах распределенного впрыска предотвращает выпадение конденсата топлива. Это облегчает запуск двигателя, уменьшает образование нагара на свечах зажигания и смывание масла со стенок цилиндров.

Отсутствие конденсации топлива увеличивает устойчивость работы и крутящий момент двигателя, особенно на малых и средних оборотах, где он наиболее нужен. Если прибавка максимальной мощности при переводе двигателя на впрыск топлива обычно равна примерно 10%, то повышение крутящего момента на малых и средних оборотах может достигать 15...20%.

Конечно, подобного повышения ходовых качеств автомобиля можно достичь и "в лоб", увеличив рабочий объем двигателя примерно на 20...30%, однако при этом ухудшится экономичность, увеличатся масса и габариты двигателя, а значит, и автомобиля в целом, возрастут эксплуатационные расходы.

Использование систем распределенного впрыска предоставляет еще одну возможность снижения расхода топлива - отключение подачи топлива в часть цилиндров с тем, чтобы в большей степени загрузить остальные. Целесообразность такого решения обусловлена тем, что при малой нагрузке КПД двигателя внутреннего сгорания резко снижается не только за счет механических потерь, но и за счет неоптимальности рабочего цикла. Возрастание КПД нагруженных цилиндров с лихвой компенсирует механические потери в выключенных цилиндрах, поэтому экономичность на малых нагрузках удается повысить на 25...30%, особенно на многоцилиндровых двигателях.

Подобный прием - поочередный пропуск циклов впрыска - также широко используют на многоцилиндровых японских и американских автомобилях. Существует и еще одно применение способа пропуска циклов - охлаждение "отключенных" цилиндров засасываемым воздухом, позволяющее сохранить работоспособность двигателя и доехать до места назначения даже после полной потери охлаждающей жидкости (двигатель GMC North Star и др.).

Применение электроники обеспечивает оптимальное управление не только двигателем, но и ходовой частью автомобиля. Во-первых, это хорошо известные антиблокировочные системы, позволяющие в большинстве случаев сохранить управляемость машины при экстренном торможении, одновременно обеспечивая минимально возможную длину тормозного пути. Во-вторых, близкую к ним функцию выполняют антипробуксовочные системы, которые стали весьма актуальны в связи с распространением переднеприводных автомобилей, у которых при пробуксовке или блокировке ведущих колес теряется управляемость. Поскольку при разгоне автомобиля передние колеса разгружаются (именно поэтому все гоночные и престижные легковые автомобили, которые должны иметь хорошую разгонную динамику, до настоящего времени проектируют с приводом либо на задние ("Daimler-Benz", "BMW"), либо на все колеса ("Audi A8"), для исключения потери управляемости и предотвращения чрезмерного износа шин весьма желательно наличие на переднеприводном автомобиле наряду с антиблокировочной и антипробуксовочной системы.

С помощью электронных устройств сглаживается также антагонизм между коробками перемены передач с автоматическим и ручным переключением. Напомним, что классическая автоматическая коробка для обеспечения плавности переключения нуждается в применении дорогого в изготовлении и громоздкого гидротрансформатора, имеющего к тому же большие механические потери (низкий КПД). Коробка же передач с ручным переключением конструктивно гораздо проще, компактнее, дешевле и надежнее. Правда, она менее удобна в эксплуатации.

Комплексная система управления двигателем и трансмиссией автоматизирует процесс переключения передач без использования гидротрансформаторов и дополнительных муфт сцепления - путем автоматического управления сцеплением и частотой вращения двигателя, сохраняя при этом все эксплуатационные достоинства как автоматических (удобство), так и ручных коробок (надежность, дешевизна, малые потери энергии). Кроме того, электронное управление практически исключает риск поломки из-за неправильного обращения.

Такая трансмиссия по себестоимости изготовления не отличается от трансмиссии с ручным управлением, а функции управления ею, как правило, интегрируют в состав объединенной системы управления двигателем и трансмиссией. Алгоритмы переключения передач в последнее время часто строят адаптирующимися к стилю езды конкретного владельца, не говоря уже о том, что всегда предусмотрены на выбор несколько стандартных режимов (скоростной, городской, экономичный и т. п.).

Не менее важную роль в современном автомобиле играют электронные системы повышения безопасности. Ее принято подразделять на активную (предотвращение аварий) и пассивную (уменьшение тяжести их последствий). Что касается активной безопасности, то ее обеспечивают улучшением разгонной и тормозной динамики автомобиля, а также повышением устойчивости на поворотах максимальным увеличением ширины колеи и понижением центра тяжести (это хорошо заметно, если сравнить силуэт отечественных и зарубежных автомобилей сходного класса, как, например, ВАЗ-2108 и Volkswagen "Golf III" или "Golf IV") в сочетании с электронной системой управления подвеской.

На дорогих автомобилях иногда применяют радиолокационную систему предотвращения лобовых столкновений и наездов (поддержания дистанции), однако от бревна или ямы в асфальте она не спасает. Для уменьшения вероятности наездов используют верхние (салонные) тормозные огни, видимые на большом расстоянии. Этого оказалось мало, и тогда была разработана система с приемопередающим радиоканалом, автоматически включающая индикатор при экстренном торможении или аварии впереди идущей машины. В настоящее время эта система, получившая золотую медаль выставки изобретений в Брюсселе, проходит доработку с последующей стандартизацией в большинстве